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A numerical analysis of the process of "wet" gasification of high-ash coal under pressure in a low-tempera-
ture fluidized bed has been performed. The applicability of the previously developed computational model, al-
gorithm, and program for the case under consideration has been noted. The presence of "hot spots"
(short-time local heatings) at different points of the bed has been confirmed.

Introduction. In [1–5], we proposed a nonstationary mathematical model, an algorithm, and a program for
calculating the process of combustion and gasification of the coke-ash residue of power coal in plants with a low-tem-
perature fluidized bed. The development of such kinds of models, algorithms, and programs is an urgent and important
problem both for developing methods of mathematical modeling, calculation, and optimization of the above class of
processes and plants and for solving practical problems of creating systems for controlling the process, the temperature
of the bed and the gas-distributing lattice, searching for slagless operational conditions of the bed, analyzing the tran-
sient processes including the start and stop of apparatuses, testing proposals and hypothesis advanced, optimizing the
test conditions, and planning experiments in plants. The existing stationary mathematical models, algorithms, and pro-
grams [6, 7] do not permit complete solution of these problems.

The main goal of the investigation of [1–5] was to develop a methodology for calculating the processes of
combustion and gasification of polydisperse coke residues of fuels in the zone of the fluidized bed of the reactor of
the TsKS-1.0 pilot demonstration plant [8, 9] designed for thermochemical processing (pyrolysis, burning, gasification)
of the high-ash Ukrainian coals in a circulating fluidized bed (CFB) at pressures up to 2.5 MPa and a high circulation
ratio of the fuel (up to 100).

In [1–3], we made calculations on the influence of the pressure, the gas temperature, the fractional composi-
tion of the fuel, the mass consumption of coal, and the mass rate of flow of air on the proceeding of the process of
combustion–gasification of the GSSh (gas-flame seedy culm) high-ash coal in the zone of the fluidized bed for the
case of the so-called "dry" air gasification of the fuel [10]:

C + O2 → CO2 , (1)

C + 0.5O2 → CO , (2)

C + CO2 → 2CO , (3)

CO + 0.5O2 ↔ CO2 . (4)

It has been established that the developed computational mathematical model, algorithm, and program are fairly effec-
tive and stable; they permit numerical analysis of both transient nonstationary and stationary temperature regimes of
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the process in a wide range of regime parameters and physicochemical and structural characteristics of the fuel, attain-
ing in the course of calculations effective times and degrees of transformation of the fuel comparable to those ob-
served in the pilot and pilot-industrial plants [8, 9]. We have revealed the presence of so-called "hot spots" (short-time
local heatings) at different points of the bed associated with the disturbance of balances in the nonstationary transient
regimes between the heat release as a result of homogeneous and heterogeneous chemical transformations and the heat
input due to the convective, radiative, and interphase heat exchange. We also noted the possibility of using the mathe-
matical model to predict and eliminate the above effects.

Formulation of the Problem. In the present paper, we consider the case of the so-called "wet" gasification
[10] of solid fuel in a fluidized bed characterized, apart from reactions (1)–(4), by the following chemical transforma-
tions [4, 10]:

C + H2O → CO + H2 , (5)

C + 2H2 → CH4 , (6)

CO + H2O ↔ CO2 + H2 , (7)

CO + 3H2 → CH4 + H2O , (8)

CO2 + 4H2 → CH4 + 2H2O , (9)

H2 + 0.5O2 ↔ H2O , (10)

CH4 + 2O2 → CO2 + 2H2O . (11)

In constructing the mathematical description of the process, the following assumptions are made [1–5]:
1. The fluidized bed zone includes the following phases: a) the dense phase containing solid particles of the

coke-ash residue of the fuel and ash, as well as the gas flowing between them and needed for the onset of fluidiza-
tion; b) the bubble phase representing the gas bypassing between the particles, with bubbles changing size as they
move on the bed.

2. The transfer processes in the bubble phase proceed in the regime of perfect displacement, and for their de-
scription in the dense phase one uses a model taking into account the effective diffusion and the heat conductivity, as
well as the filtration of the components in the bed in order to reflect the deviations from the perfect mixing regime
caused by the circulation of solid particles, the transfer of a portion of the gas with moving bubbles, the heat and
mass transfer between the bubbles and the gas flow in the dense phase, and the mixing mechanism analogous to the
Taylor diffusion and associated with the presence of size dispersion of the bubbles [11].

3. To analyze the qualitative mechanisms of transformations of solid fuel particles in the bed at relatively
short times corresponding to the transient regimes of combustion and gasification of power coals in a fluidized bed, it
is recommended [11] to use the diffusion model taking into account the effective coefficients of longitudinal mixing
and the circulation velocity of the solid particles.

4. In the dense phase, the surface heterogeneous reactions of combustion and gasification of the coke-ash resi-
due (1)–(3), (5), (6), as well as a homogeneous reaction of CO oxidation (4) proceed.

5. In the bubble phase, solid particles are absent and the homogeneous chemical reactions (4) and (7)–(11)
proceed.

6. The initial fractional composition of the coke fed into the apparatus is described by the Rosin–Rammler
size distribution function [6, 7, 12].
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7. The coke fuel particles are spherical. We take the AS-model of the thermochemical transformation of fuel
particles as the ash falls off from their outer surface, which is due to the intensive mixing of solid particles in the bed,
their collision, breaking, and other interaction effects [6, 7].

Mathematical Model of the Process. On the basis of the assumptions made, the system of equations of the
model in the nonstationary one-dimensional formulation is of the form [5]
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The first term on the right-hand side of Eq. (12) represents the mass transfer of the jth gaseous component in the
dense phase due to the longitudinal effective diffusion, the second term — the convective-filtration transfer, the third
one — the interphase mass transfer between the dense phase and the bubbles, and the fourth one — the convective
mass transfer between the gas flow in the dense phase and the surface of the fuel particles. The first term on the
right-hand side of Eq. (13) corresponds to the energy transfer in the dense phase due to the effective parallel thermal
conductivity, the second one corresponds to the convective-filtration transfer, the third one — to the interphase heat
transfer between the dense and bubble phases, the fourth one — to the convective and radiative heat transfer between
the coke-ash fractions and the gas flow in the dense phase, the fifth one — to the near-wall heat transfer, the sixth
one — to the heat release due to the homogeneous chemical transformations, and the seventh one — to the convective
and radiative heat transfer between the ash fractions and the gas flow in the dense phase.

The bubble phase is
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The first terms on the right sides of Eqs. (16) and (17) present the change in the mass of the jth gaseous component
and the heat release as a result of the homogeneous chemical reactions, the second ones — the interphase mass and
heat transfer between the bubbles and the dense phase of the bed.

The size distribution of particles is
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The first term on the left side of Eq. (19) presents the change in the portion of coke-ash fractions in terms of the lon-
gitudinal effective diffusion, the second one — the convective heat transfer due to the circulation of particles, the third
one — the expenditure of particles due to the heterogeneous chemical transformations and carry-over. In Eq. (20) de-
scribing the change in the portion of ash fractions, the physical meaning of the first two terms on the left side is
analogous to (19), and the third one — to the carry-over.

Individual particles of the coke-ash residue and ash
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t = 0 :   Cj
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Equation (24) defines the change in the surface concentration of the jth gaseous component due to the convective mass
transfer between the gas flow in the dense phase and the surface of fuel particles and the heterogeneous chemical
transformations. Equation (25) defines the change in the surface temperature of the coke-ash fractions due to the heat
release caused by the surface chemical transformations and the convective and radiative heat transfer between the
phases. Equation (26) corresponds to the change in the temperatures of ash particles due to the convective and radia-
tive heat transfer between the gas flow in the dense phase and the particle surface.

The equations of state and normalization condition are
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The energy transfer in the reactor walls is [13]
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Determination of the main parameters of the model. The porosity and the working height of the fluidized bed
are estimated on the basis of the law of expansion of the homogeneous fluidized bed [11]
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The minimum velocities of onset of fluidization and hovering are estimated by the known criteria formulas [11]
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The effective diffusion coefficients in the gas phase are taken equal to the diffusion coefficients of the corresponding
components.

The coefficients of interphase heat and mass transfer between the dense and bubble phases are estimated by
the relations of the Kunin–Levenspiel model [14]
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To calculate the bubble diameter averaged over the bed cross-section, we use the relations [7, 15]
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The local velocities of emersion of bubbles in the bed are estimated by the relations [10, 11, 15, 16]
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The rates of surface heterogeneous reactions of coke combustion (1) and (2) are determined by the relations [9]
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where χ = 0.45 for the intradiffusion and χ = 0.465 for the transient regimes of reaction between the kinetic and the
intradiffusion regimes is the generalized stoichiometric coefficient; ks

0 (s = 1, 2) denotes the reaction rate constants at
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the reference temperature T0
c; E1,2 stands for the observed activation energies; γ = 0.85 for the intradiffusion and γ =

1 for the transient regimes of reaction; C0,2
F  is the fixed concentration of O2 under normal conditions.

The rate of the heterogeneous reaction of coke gasification (3) with CO2 is determined by an equation analo-
gous to the Langmuir–Hinshelwood model [9, 17]:

W3 = 

k3
0
 exp 





E1

R
 




1

T0
 c − 

1

Tl
 c








 pCO2

1 + k4
0
 exp 





E2

R
 




1

Tl
 c − 

1

T0
 c








 pCO2

 + k5
0
 exp 





E3

R
 




1

Tl
 c − 

1

T0
 c








 pCO

 ,     l = 1, N
 c

_____
 .

The reaction rate of steam gasification of coke (5) is calculated similarly to the expression [18, 19]
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The hydrogasification rate of coke (6) is determined by the equation [18]

W6 = k9
0
 exp 





E9

R
 




1

T0
 c − 

1

Tl
 c








 pH2

 ,     l = 1, Nl
 c

_____
 .

The rate of the homogeneous reaction (4) of CO oxidation is taken from [20]
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To calculate the rates of the homogeneous "water displacement" reaction (7), we use the expressions [21]
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To calculate the rates of the methane conversion reactions (8) and (9), we use the equations [22]
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The rate of the homogeneous reaction of hydrogen oxidation (10) is calculated as [20, 21]
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The rate of the homogeneous reaction of methane combustion (11) is calculated according to the relation [23]
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The thermal effects of reactions (1)–(12) depending on the ambient temperature are determined by the ap-
proximation polynomials of [24]. The effective longitudinal heat conductivity coefficients in the bed are estimated on

TABLE 1. Calculation Formulas Used to Estimate the Heat and Mass Transfer Coefficients
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the basis of the recommendations given in [11, 16]. The heat transfer coefficients from the wall to the bed are deter-
mined by the relations [16]

Ηw C 0.8Ηmax ,

where Hmax is the maximum heat transfer coefficient calculated by the relation [16]

Numax = 0.85Ar1
0.19

 + 0.006Ar1
0.5

Pr1
0.33

 .

The coefficients of convective heat and mass transfer between the active surface of the fuel particle and the
surrounding gas are calculated on the basis of the criteria relations of [16, 25] taking into account the presence of in-
ertial ash particles in the fluidized bed (see Table 1). The effective longitudinal transfer coefficient in the bed is de-
termined by the relations [11, 16]
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correlation [6, 7, 26]
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Computational algorithm. In the numerical analysis of the problem, we calculate sequentially the process char-
acteristics in the bubble phase, the surface concentrations of reagents, the surface temperature of the fuel and ash par-
ticles, the size distribution functions of solid fractions, and the process characteristics in the dense phase of the bed.
In so doing, the systems of equations of transfer in the bubble phase (16)–(18) and on individual particles (24)–(27)
are solved by the relaxation method of [27].

The transfer equations in the dense phase (12)–(15) and the equations for the size distribution functions of
solid particles (19)–(23) and wall temperatures (31)–(34) are solved by the sweep method [28, 29]. In so doing, the
integrals in Eqs. (12) and (13) are calculated by the Simpson method, and the source terms in Eqs. (19) and (20) are
calculated by means of numerical differentiation [30]. In all thermal balance equations (13), (17), (25), and (26), tem-
perature linearization of the terms taking into account the heat release due to the chemical transformations is realized.

A specific feature of the algorithm is automatic selection of the time step by means of Richardson extrapola-
tion [28], in which a comparison of the maximal relative computational errors of the gas temperatures in the dense and
bubble phases and of the integral mean temperatures of the coke-ash residue and ash at the whole time step and at
two half-steps is made.

The computing program was developed in FORTRAN-90. The basic initial data for the calculations are: frac-
tional portions of the fuel and ash, thermophysical characteristics of the fuel, ash, and gaseous components, data of the
technical and elemental analysis of the coal, coke-ash residue, and ash, physical sizes of the apparatus, pressure, mass
flow of air and coal consumption, initial temperatures of the coal, gases, ash, and walls, composition of the blow
gases, and macrokinetic parameters of the chemical reactions.

The main results of the calculations are: fields of the main calculated variables in the phases of the bed on
its height at different instants of time, size distribution functions of solid particles, degrees of conversion and sizes
of particles, characteristics of the onset of fluidization and carry-over, mass-mean temperatures of the phases, walls,
and bed, interphase heat and mass transfer coefficients, reaction rates, and parallel effective thermal conductivity of
the bed.

Results of the Calculations and Discussion. In the numerical analysis of the model (12)–(33), we investi-
gated the ignition dynamics of the fluidized bed in the process of thermochemical processing of high-ash coal. We
varied the pressure, the initial temperatures of the fuel, ash, and gas, the fractional composition of the fuel, the mass
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flow of air and coal consumption, and the coefficients of heat and mass transfer between solid particles of coal and
ash with a gas flow in the dense phase.

The results of the calculations confirmed the conclusions of [1–4] that despite the expansion of the stoichio-
metric mechanism of chemical reactions in the bed, the proposed mathematical model, computational algorithm, and
program are fairly effective and stable and make it possible to attain, in the course of calculations, effective times of
thermochemical transformation of the fuel comparable to those observed in pilot and pilot-production plants with dif-
ferent modifications of the fluidized bed.

Figures 1 and 2 present the results of the calculations for the influence of pressure on the gas temperature and
the O2 concentration in the dense phase. It is seen that, in general, the current characteristics of the process (profiles),

Fig. 1. Temperature profiles of the gas in the dense phase at different instants
of time (a, b) and dynamics of change in the mass average temperature of the
dense phase (c) as a function of pressure: a) P0,1 = 0.1 MPa: 1) t = 0.01 sec,
2) 0.164, 3) 1.27, 4) 23.2; b) P0,1 = 2.5 MPa: 1) t = 0.01 sec, 2) 0.164, 3)
14.9, 4) 88.2; c) P0,1 = 0.1 MPa; 2) 0.25, 3) 0.55, 4) 0.868, 5) 1,65, 6) 2.5.

Fig. 2. Profiles of O2 concentrations in the dense phase at different instants of
time at P0,1 = 0.1 MPa (a), 0.868 (b) and 2.5 (c): a) 1) t = 0.2⋅10−4 sec,
0.14⋅10−3, 0.126⋅10−2, 0.102⋅10−1; 2) 0.164; 3) 1.27 and 12.6; b) 1–4) t =
0.2⋅10−4 sec, 0.14⋅10−3, 0.126⋅10−2, 0.102⋅10−1, 5) 0.164, 6) 12.7, 7) 15.2; c)
1) t = 0.2⋅10−4 sec, 2) 0.14⋅10−3, 3) 0.126⋅10−2, 4) 0.102⋅10−1, 5) 0.164.

Fig. 3. Profiles of O2 concentrations in the bubble phase at different instants of
time at P0,1 = 0.1 MPa (a), 0.868 (b), and 2.5 (c): a) 1) t = 0.2⋅10−4 sec, 2)
0.14⋅10−3, 3) 0.126⋅10−2, 4) 0.102⋅10−1, 5) 0.164, 6) 1.27; b) 1) t = 0.2⋅10−4

sec, 2) 0.14⋅10−3, 3) 0.126⋅10−2, 4) 0.102⋅10−1, 5) 0.164, 6) 1.51, 7) 15.2; c) 1)
t = 0.2⋅10−4 sec, 2) 0.14⋅10−3, 3) 0.126⋅10−2, 4) 0.164, 5) 1.47, 6) 14.9.
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intensity with increasing pressure, and the mass-average temperature of the dense phase decreases somewhat, which is
due to the retardation of the process by the gaseous components as a consequence of the reactions of gasification of
the coke-ash residue of the fuel with CO2 and H2O.

Figure 3 shows the concentration profiles of oxygen in the dense phase on the bed height at various instants
of time depending on the pressure. The results point to the intensification of the combustion process with increasing
pressure.

The results of the calculations also confirmed the conclusions of [1–4] about the possible existence in the bed
of so-called "hot spots" (short-time local heatings), in which the maximum temperature can be close to the temperature
of the onset of fuel slagging (for which we took the temperature of onset of GSSh coal slagging close to 1400oC
[32]) or even exceed it. This is evidenced by the temperature profiles of the coke and ash fractions at the moment of
achieving "hot spots" for various pressures (Fig. 4). It can be seen that in the presence of additional combustible com-
ponents in the bed, "hot spots" appear mainly at the upper points of the bed. The main reason for their appearance,
as in [1–4], is the disturbance at the above points of the heat balance between the heat release as a result of the
chemical transformations and the supply of heat from the environment due to convective and radiative heat transfer.
However, this conclusion has to be refined by means of additional studies of the thermal stability of the process under
consideration with regard for the possible effects of ash melting as in [33–35]. Such studies will be made in our fur-
ther works.

The most stable calculations of the process were noted in calculating the heat and mass transfer coefficients
by criterial relations [25].

CONCLUSIONS

1. We have developed a mathematical model, an algorithm, and a program for calculating the process of com-
bustion–gasification of the multifractional coke residue of high-ash coal under pressure in a low-temperature fluidized
bed at an expanded mechanism of homogeneous and heterogeneous chemical transformations.

2. It has been shown that despite the expansion of the mechanism of chemical reactions in the bed, the pro-
posed mathematical model and computing algorithm and program are fairly effective and stable and permit a numerical
analysis of the considered class of processes proceeding in a fluidized bed in a wide range of regime parameters of

Fig. 4. Temperature profiles of different coke (a, c) and ash (b, d, e) fractions
at the moment of the appearance of "hot" spots: a, b) P0,1 = 0.1 MPa, t =
23.1 sec; c, d) 0.868 and 46.5; e) 2.5 MPa; 1) r0

sort = 2.5 mm; 2) 2.05; 3) 1.3;
4) 0.8; 5) (0.5–0.1).
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functioning of apparatuses, their physical sizes, and physicochemical and structural characteristics of the fuel, attaining
therewith effective times of fuel transformation comparable to those observed in pilot and pilot-production plants with
different modifications of the fluidized bed. They also make it possible to test different hypotheses advanced, estimate
parameters that are difficult to measure in experiments (observed rates of chemical transformations in the bed, inter-
phase heat and mass transfer coefficients, effective coefficients of longitudinal transfer, etc.), predict optimal opera-
tional conditions of apparatuses, and search for regimes of slagless operation of the bed.

3. The investigations have confirmed the previously obtained numerical results on the possible existence in the
bed of "hot spots" (short-time local heatings) in which the maximum temperature can be close to the temperature of
onset of fuel slagging or exceed it and the possible mechanism of their appearance. The proceeding in the bed of ad-
ditional heterogeneous and homogeneous chemical transformations intensifies the appearance of "hot spots" and pro-
motes their displacement to the upper points of the bed.

4. It is preferable to use for numerical calculations criterial relations for the heat and mass transfer coefficients
[25] taking into account the broader relationships between the sizes of the active fuel and inert ash particles in the bed
than in [16].

NOTATION

Arsort = [g(dpart
eqv)3(ρ2

sort − ρ0,1)] ⁄ (η1
2ρ0,1), Archimedes criterion; a, thermal diffusivity, m2⋅sec−1; C, concentra-

tion, mass fractions; cp1
eff = (cp1εmfρ0,1 + cp2

a (1 − εmf)ρ2
a) ⁄ (εmfρ0,1 + (1 − εmf)ρ2

a), effective heat capacity of the environ-
ment; cp, specific heat capacity at a constant pressure, J ⁄ (kg⋅K); d, diameter, m; D, diffusion coefficient, m2 ⁄ sec; E,
activation energy, J ⁄ mole; F, contour surface of particles, m2 ⁄ m3; f, size distribution function of particles, m−1; G,
mass flow; kg ⁄ (m2⋅sec); g, acceleration of gravity, m ⁄ sec2; K, carry-over rate constant, sec−1; k0, reference reaction
rate constant at the initial gas or particle temperature, m ⁄ sec, m3 ⁄ (kg⋅sec) (for combustion and homogeneous reac-
tions), MPa ⁄ sec, MPa−1 (for gasification reactions); L, bed height, m; mgas, total number of gaseous components; M,
molecular mass, kg ⁄ kmole; nq and ns, total number of homogeneous and heterogeneous reactions; N, total number of
fractions of solid particles; Nu = Hconvdpart

eqv ⁄ λ1
eff, Nusselt criterion; P, total pressure, Pa; p, partial pressures of react-

ing components, MPa; Pr1 = cp1
effµ1

 ⁄ λ1
eff, Prandtl criterion; Q, thermal effect of a reaction, J ⁄ kg; R, universal gas

constant, J ⁄ (mole⋅K); r, particle radius, m; Re = umfdpart
eqvρ0,1

 ⁄ µ1, Reynolds criterion; Shj = βjdpart
eqv ⁄ D1j, Sherwood cri-

terion; Sc1 = η1
 ⁄ D1j, Schmidt criterion; t, time, sec; T, temperature, K; T

__
∗, averaged ambient temperature, K; u,

speed of filtration of the gas in the bed, m ⁄ sec; u0, feed rate of fuel under the bed, m ⁄ sec; x, coordinate of the bed
height, m; yk, molar fraction of CO (for reaction (8)) and CO2 (for reaction (9)) (see (36)); W, reaction rate, kg ⁄ 
(m3⋅sec); α, volume fraction of bubbles in the bed; β, mass transfer coefficient between the gas flow in the dense
phase of the bed and the particle surface, m ⁄ sec; γ, observed order of combustion reactions; δ, thickness of reactor
walls, m; ε, porosity; Hb.e, coefficient of "dense phase–bubbles" interphase heat transfer, W ⁄ (m2⋅sec); Hb.c, coefficient
of "gas circulation region–bubbles" heat transfer, W ⁄ (m2⋅sec); Hc.e, coefficient of heat transfer "gas circulation region–
dense phase", W ⁄ (m2⋅sec); Hconv

i , heat transfer coefficient between the gas flow and the surface of particles, W ⁄ 
(m2⋅sec); Hw, flow-wall heat transfer coefficient, W ⁄ (m2⋅sec); η, kinematic viscosity, m2 ⁄ sec; κ, emissivity factor;
Kb.e, coefficient of "dense phase–bubbles" interphase mass transfer, sec−1; Kb.c, coefficients of "gas circulation region–
bubbles" mass transfer, sec−1; Kc.e, coefficient of heat and mass transfer "gas circulation region–dense phase", sec−1; λ,
heat conductivity coefficient, W ⁄ (m2⋅K); λ1

eff = λ1εmf + λ2
a(1 − εmf), effective heat conductivity of the environment,

W ⁄ (m2⋅K); µ, dynamic viscosity, Pa⋅sec; ν, stoichiometric coefficients; θ = Eq
 ⁄ RT0,1, θn = Qq

 ⁄ RT0,1; ρ, density,
kg ⁄ m3; σ0, Boltzmann, constant, W ⁄ (m2⋅K4); υ = 1 (for reaction (8)) and υ = 2 (for reaction (9)) (see (36); ϕ, frac-
tion of the irradiated surface of particles; χ, generalized stoichiometric coefficient reflecting the proceeding of reac-
tions of combustion of coals and cokes to CO or CO2; ξ, particle shape factor; ψ, fractional portion of particles in
the initial size distribution, m−1; Ψ, bed mass, kg. Superscripts: d, dense phase; c, coke-ash residue; b, bubble phase;
a, fraction of ash; p, pyroliser; sort, sort of particles (sort = c, coke; a, ash); surf, surface of a fuel particle; i, kind
of the phase of the bed; eff, effective value; eqv, equivalent value; F, fixed value under normal conditions. Sub-
scripts: 1, gas phase; j, gaseous component number; 1, CO2; 2, CO; 3, H2O; 4, H2; 5, O2; 6, CH4; 7, N2; sp, spe-
cific; s, heterogeneous reaction number; q, homogeneous reaction number; s,j, heterogeneous reaction, jth component;
q,j, homogeneous reaction, jth component; 0,1, initial value, gas phase; 0,2, initial value, solid phase; l, solid fraction
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number; ap, apparatus; b, bubbles; hov, hovering conditions; f, fuel; mf, conditions for the beginning of fluidizaction;
cr, critical value; w, wall; b.c, circulation region–bubbles; c.e, circulation region–emulsion (dense) phase; b.e, bubbles–
emulsion (dense) phase region; gas, gaseous; bed, bed; conv, convective; *, conditions for emersion of bubbles; car,
carry-over; part, particle; 0, initial value; max, maximal; 

_
 , averaging.
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